分析 由于正三棱锥的侧面为全等的等腰三角形,故侧面与球的切点在棱锥的斜高上,利用等积法得出棱锥的高与棱锥底面边长的关系,得出棱锥的体积关于高h的函数V(h),利用导数与函数的最值得关系计算V(h)的极小值点,然后转化为底面边长得答案.
解答 解:设△ABC的中心为O,取AB中点D,连结OD,VD,VO,
设OD=a,VO=h,则VD=$\sqrt{O{D}^{2}+V{O}^{2}}$=$\sqrt{{a}^{2}+{h}^{2}}$.
AB=2AD=2$\sqrt{3}$a.
过O作OE⊥VD,则OE=2,
∴S△VOD=$\frac{1}{2}$OD•VO=$\frac{1}{2}$VD•OE,
∴ah=2$\sqrt{{a}^{2}+{h}^{2}}$,整理得a2=$\sqrt{\frac{4{h}^{2}}{{h}^{2}-4}}$(h>2).
∴V(h)=$\frac{1}{3}$S△ABC•h=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×$(2\sqrt{3})^{2}$a2h=$\sqrt{3}$a2h=$\frac{4\sqrt{3}{h}^{3}}{{h}^{2}-4}$.
∴V′(h)=4$\sqrt{3}$×$\frac{3{h}^{2}({h}^{2}-4)-2{h}^{4}}{({h}^{2}-4)^{2}}$=4$\sqrt{3}$×$\frac{{h}^{4}-12{h}^{2}}{({h}^{2}-4)^{2}}$.
令V′(h)=0,得h2-12=0,解得h=2$\sqrt{3}$.
当2<h<2$\sqrt{3}$时,V′(h)<0,当h>2$\sqrt{3}$时,V′(h)>0,
∴当h=2$\sqrt{3}$,即a=$\sqrt{6}$,也就是AB=$\frac{6}{\sqrt{3}}a=6\sqrt{2}$时,V(h)取得最小值.
故答案为:$6\sqrt{2}$.
点评 本题考查了球与外切多面体的关系,棱锥的体积计算,导数与函数的最值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 40 | B. | 42 | C. | 44 | D. | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
分组 | 频数 | 频率 |
[150,160) | 2 | |
[160,170) | n1 | f1 |
[170,180) | 14 | |
[180,190) | n2 | f2 |
[190,200] | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com