精英家教网 > 高中数学 > 题目详情

数列的前项和为,且的等差中项,等差数列满足 
(1)求数列的通项公式
(2)设=,求数列的前项和.

(1)  ,   (2)

解析试题分析:(1)由的关系可得,两式相减可得数列的通项公式,在使用的关系时要注意的情况讨论;(2) 的通项公式是由一个等差数列与一个等比数列比值的形式,求其和时可用错位相减法.两式相减时要注意下式的最后一项出现负号,等比求和时要数清等比数列的项数,也可以使用这个求和公式,它可以避免找数列的数项;最终结果化简依靠指数运算,要保证结果的成功率,可用作为特殊值检验结果是否正确.
试题解析:(1)由题意知,,故
时,由,即
是以1为首项以2为公比的等比数列,
所以.
因为,所以的公差为2,所以
(2)由=,得

-②得


所以
考点:1、的关系;2、错位相减法求数列和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:数列{an}的前n项和Sn=n2+2n(n∈N*)
(1)求:通项
(2)求和: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知n∈N*,数列{dn}满足dn,数列{an}满足and1d2d3+…+d2n.又知数列{bn}中,b1=2,且对任意正整数mn.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和T2013.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,满足
(1)求的值;
(2)猜想数列 的通项公式,并用数学归纳法证明;
(3)己知,设,记,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项为,公差为,且不等式的解集为
(I)求数列的通项公式
(II)若,求数列项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足,等差数列满足
(1)求数列的通项公式;
(2)设,数列的前项和为,求证 .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

递减等差数列{an}的前n项和Sn满足S5S10,则欲使Sn最大,则n=_____

查看答案和解析>>

同步练习册答案