精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差d不为零,且,a2=a4+a6
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求满足Sn-2an-20>0的所有正整数n的集合.
【答案】分析:(1)由,a2=a4+a6.利用等差数列的通项公式建立关于d,a1,的方程,解方程可求a1,d,进而可求an
(2)由等差数列的求和公式可求sn,代入已知不等式Sn-2an-20>0可求n的范围,进而可求
解答:解(1)由,a2=a4+a6
可得
联立可得,d2+5d=0
∵d≠0
∴d=-5,a1=35
∴an=35+(n-1)×(-5)=-5n+40
(2)
∵Sn-2an-20>0

整理可得,n2-19n+40<0


∵n∈N*
∴所求的n的集合{3,4,5…16}
点评:本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案