精英家教网 > 高中数学 > 题目详情
如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.
【答案】分析:(1)依题意可表示出切线的方程整理后代入C2的方程整理求得m和t的关系式,利用判别式等于0求得m=0或m和t的关系式,先看当m=0时,代入上式判断出不符合题意;进而看m=(t2-1)2,代入上式,满足条件,最后可得m的表达式及N的坐标.
(2)表示出直线AM和AN的斜率,若∠MAB=∠NAB,则kAM=-kAN,求得t,进而根据(1)中m和t的关系式,求得m,进而求得M,N的坐标,利用两点式求得MN所在直线的方程.
解答:解:(1)切线l:y-(t2-1)=2t(x-t),即y=2tx-t2-1,
代入
化简并整理得(m+4t2)x2-4t(t2+1)x+(t2+1)2-m=0,(*)
由△=16t2(t2+1)2+4(m+4t2)[m-(t2+1)2]=4m[m-(t2-1)2]=0
得m=0或m=(t2-1)2
若m=0,代入(*)式得,与已知|xN|<1矛盾;
若m=(t2-1)2,代入(*)式得满足条件,

综上,m=(t2-1)2,点N的坐标为
(2)因为
若∠MAB=∠NAB,则kAM=-kAN,即t=2,此时m=9,
故当实数m=9时,∠MAB=∠NAB.
此时kAM=1,kAN=-1,∠MAB=∠NAB=45°,
易得M(2,3),
此时MN所在直线的方程为y=4x-5.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题的能力,推理计算能力,知识的综合问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线C2:y=-
m(1-x2)
(|x|<1)
也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌二中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市四校联考高二(下)期末数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州二中、学军中学、效实中学、嘉兴一中、杭州高中五校高三第二次联考数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

同步练习册答案