【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形,,,,、分别是的两个三等分点.若把等腰梯形沿虚线、折起,使得点和点重合,记为点,如图(2).
(1)求证:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).
(1)求曲线在直角坐标系中的普通方程;
(2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数在区间上的值域为,则称区间是函数的“完美区间”,另外,定义区间的“复区间长度”为,已知函数,则( )
A.是的一个“完美区间”
B.是的一个“完美区间”
C.的所有“完美区间”的“复区间长度”的和为
D.的所有“完美区间”的“复区间长度”的和为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1000元的概率.
附:回归方程,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD,为等腰直角三角形,,,点E,F分别为BC,PD的中点,直线PC与平面AEF交于点Q.
(1)若平面平面,求证:.
(2)求直线AQ与平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为原点,左焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于两点.
(1)若为线段的中点,求直线的方程.
(2)求点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,问:是否为定值?若是,请求出的值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com