精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.

【答案】(Ⅰ) ;(Ⅱ)

【解析】

(Ⅰ)由直线的参数方程消去参数得直线的普通方程,再根据极坐标方程与直角坐标方程的转化关系可得曲线的直角坐标方程;

(Ⅱ)根据已知条件可得直线的参数方程,将直线的参数方程代入曲线的直角坐标方程中,根据直线参数方程中的参数的几何意义和交点的中点可得的值.

(Ⅰ)∵直线的参数方程为为参数),

∴直线的普通方程为

,得,即

∴曲线的直角坐标方程为

(Ⅱ)∵直线经过曲线的焦点

,直线的倾斜角

∴直线的参数方程为为参数)

代入,得

两点对应的参数为

为线段的中点,∴点对应的参数值为

又点,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1),等腰梯形分别是的两个三等分点.若把等腰梯形沿虚线折起,使得点和点重合,记为点,如图(2.

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).

1)求曲线在直角坐标系中的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数在区间上的值域为,则称区间是函数完美区间,另外,定义区间复区间长度,已知函数,则(

A.的一个完美区间

B.的一个完美区间

C.的所有完美区间复区间长度的和为

D.的所有完美区间复区间长度的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数有相同的公切线,则实数a的取值范围为_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1000元的概率.

附:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD为等腰直角三角形,,点EF分别为BCPD的中点,直线PC与平面AEF交于点Q.

(1)若平面平面,求证:.

(2)求直线AQ与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为原点,左焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于两点.

1)若为线段的中点,求直线的方程.

2)求点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,问:是否为定值?若是,请求出的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为矩形,二面角.

(1)求证:平面

(2)为线段上的点,当时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案