精英家教网 > 高中数学 > 题目详情
17.下列方程表示的直线倾斜角为135°的是(  )
A.y=x-1B.y-1=$\frac{\sqrt{2}}{2}$(x+2)C.$\frac{x}{5}$+$\frac{y}{5}$=1D.$\sqrt{2}$x+2y=0

分析 根据题意,由直线的倾斜角与斜率的关系可得:直线倾斜角为135°,则其斜率k=-1,据此依次求出4个选项中直线的斜率,即可得答案.

解答 解:根据题意,若直线倾斜角为135°,则其斜率k=tan135°=-1,
依次分析选项:
对于A、其斜率k=1,不合题意,
对于B、其斜率k=$\frac{\sqrt{2}}{2}$,不合题意,
对于C、将$\frac{x}{5}$+$\frac{y}{5}$=1变形可得y=-x+5,其斜率k=-1,符合题意,
对于D、将$\sqrt{2}$x+2y=0变形可得y=-$\frac{\sqrt{2}}{2}$x,其斜率k=-$\frac{\sqrt{2}}{2}$,不合题意,
故选:C.

点评 本题考查直线的倾斜角,关键是掌握直线的倾斜角与斜率的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的底面为菱形,∠BAD=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法中错误的是(  )
A.异面直线PA与BC的夹角为60°B.若M为AD的中点,则AD⊥平面PMB
C.二面角P-BC-A的大小为45°D.BD⊥平面PAC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,且椭圆C过点$({1,\frac{3}{2}})$.
(I)求椭圆C的标准方程;
(Ⅱ)若椭圆C的右顶点为A,直线l交椭圆C于E、F两点(E、F与A点不重合),且满足AE⊥AF,若点P为EF中点,求直线AP斜率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.斜率为$\sqrt{3}$的直线l经过抛物线y2=2px(p>0)的焦点F,且交抛物线于A,B两点,若AB中点到抛物线准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\widehaty=\widehatbx+\widehata$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={x||x-1|<2},B={x|$\frac{1}{9}$<3x<9},则A∩B=(  )
A.(-1,3)B.(-1,2)C.(-2,2)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a1=3,${a_n}=\frac{1}{2}{a_{n-1}}+1(n≥2,n∈{N^*})$则数列{an}的通项公式是an=(  )
A.$\frac{{{2^n}+1}}{{{2^{n-1}}}}$B.$\frac{{{2^n}-1}}{{{2^{n-1}}}}$C.$\frac{{{2^n}+1}}{{{2^{n+1}}}}$D.$\frac{{{2^n}-1}}{{{2^{n+1}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax+$\frac{b}{x}$+c是奇函数,且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}$)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算sin$\frac{π}{6}$+tan$\frac{π}{3}$的值为(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{5\sqrt{3}}{6}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

同步练习册答案