精英家教网 > 高中数学 > 题目详情

(06年上海卷理)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是                 .

答案:36

解析:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年上海卷理)如图,平面中两条直线相交于点O,对于平面上任意一点M,若分别是M到直线的距离,则称有序非负实数对()是点M的“距离坐标”.已知常数≥0,≥0,给出下列命题:

①若=0,则“距离坐标”为(0,0)的点

有且仅有1个;

②若=0,且≠0,则“距离坐标”为

)的点有且仅有2个;

③若≠0,则“距离坐标”为()的点有且仅有4个.

上述命题中,正确命题的个数是                            (      )

(A)0; (B)1; (C)2; (D)3.

查看答案和解析>>

同步练习册答案