精英家教网 > 高中数学 > 题目详情

【题目】在数学上,常用符号来表示算式,如记=,其中.

1,…,成等差数列,且,求证:

2,记,且不等式恒成立,求实数的取值范围.

【答案】1详见解析2

【解析】

试题分析:由题意求出等差数列的通项公式,然后结合二项式系数的性质证明在二项式展开式中分别取x=-1,x=1,求出bn,再借助于二项式系数的性质化简可得,代入不等式,分n为奇数和偶数求得t的取值范围

试题解析:1设等差数列的通项公式为,其中为公差

因为,所以

所以=.

注:第1问也可以用倒序相加法证明.酌情给分

2,则

,则,所以

根据已知条件可知,

所以

代入不等式得,

为偶数时,,所以

为奇数,,所以

综上所述,所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期为,则(  )

A. 函数f(x)的一个零点为

B. 函数fx)的图象关于直线x对称

C. 函数fx)图象上的所有点向左平移个单位长度后,所得的图象关于y轴对称

D. 函数fx)在(0,)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①函数的值域是,则函数的值域为

②把函数图像上的每一个点的横坐标伸长到原来的4倍,然后再向右平移个单位得到的函数解析式为

③已知,则与共线的单位向量为

④一条曲线和直线的公共点个数是m,则m的值不可能是1.

其中正确的有___________(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示在相距两个位置分别为300,100名学生,在道路上设置集合地点要求所有学生沿最短路径到点集合记所有学生进行的总路程为.

(1)设写出关于的函数表达式

(2)当最小时集合地点离点多远

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处取得极值求函数的单调区间

(Ⅱ)若时函数有两个不同的零点.

的取值范围;②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果直线a平行于平面,则(

A.平面内有且只有一直线与a平行

B.平面内有无数条直线与a平行

C.平面内不存在与a平行的直线

D.平面内的任意直线与直线a都平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题

①若三个平面两两相交,则它们的交线只能平行或重合;

②若a、b是异面直线,则过不在a、b上的任一点一定可以作一条直线和a、b都相交;

③正三棱锥的底面边长为a,侧棱长为b,若过SA、SB的中点作平行于侧棱SC的截面,则截面面积为;

④过球面上任意给定两点的平面与球面相截时其截面面积最大,则这样的平面只有一个.

其中( ).

A. 只有①,②成立.

B. 只有③成立.

C. 只有成立.

D. ①、②、③、④都不成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面垂直于为棱上的点,.

(1)若为棱的中点,求证:平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

同步练习册答案