分析 (1)记甲选手能过关为事件A,先求出基本事件总数,再求出事件A包含的基本事件数,由此能求出该选手能过关的概率.
(2)X的所有可能取值为1,2,3.分别求出相应的概率,由此能求出X的分布列和E(X).
解答 解:(1)记甲选手能过关为事件A,
则基本事件总数n=C${\;}_{6}^{3}$=20,
事件A包含的基本事件数m=C${\;}_{4}^{3}$+C${\;}_{4}^{2}$C${\;}_{2}^{1}$=16,
所以该选手能过关的概率P(A)=$\frac{m}{n}$=$\frac{4}{5}$.
(2)X的所有可能取值为1,2,3.
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$.
则X的分布列为
X | 1 | 2 | 3 |
P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 32 | B. | 56 | C. | 63 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | $\frac{1}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.25 | B. | 0.30 | C. | 0.35 | D. | 0.40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com