精英家教网 > 高中数学 > 题目详情
3.某次知识竞赛中,从6道备选题中一次性随机抽取3道,并独立完成所抽取的3道题.某选手能正确完成其中4道题,规定至少正确答对其中2道题目便可过关.
(1)求该选手能过关的概率;
(2)记所抽取的3道题中,该选手答对的题目数为X,写出X的概率分布列,并求E(X).

分析 (1)记甲选手能过关为事件A,先求出基本事件总数,再求出事件A包含的基本事件数,由此能求出该选手能过关的概率.
(2)X的所有可能取值为1,2,3.分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(1)记甲选手能过关为事件A,
则基本事件总数n=C${\;}_{6}^{3}$=20,
事件A包含的基本事件数m=C${\;}_{4}^{3}$+C${\;}_{4}^{2}$C${\;}_{2}^{1}$=16,
所以该选手能过关的概率P(A)=$\frac{m}{n}$=$\frac{4}{5}$.
(2)X的所有可能取值为1,2,3.
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$.
则X的分布列为

X123
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
所以E(X)=1×$\frac{1}{5}$+2×$\frac{3}{5}$+3×$\frac{1}{5}$=2.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若等差数列{an}的前15项和为5π,则cos(a4+a12)=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若将一个质点随机投入长方形ABCD中,其中AB=2,BC=1,则质点落在以BC为直径的半圆内的概率是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面直角坐标系中,点O为原点.A(-3,-4),B(5,-10).
(1)求$\overrightarrow{AB}$的坐标及|$\overrightarrow{AB}$|;
(2)若$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,$\overrightarrow{OD}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$,求$\overrightarrow{OC}$•$\overrightarrow{OD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(x+$\frac{1}{x}$)n的展开式中第3项与第7项的二项式系数相等,则该展开式中$\frac{1}{x^2}$的系数为(  )
A.32B.56C.63D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(0,-1),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若z(2+i)=-i,则|z|=(  )
A.2$\sqrt{2}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设某地区历史上从某次特大洪水发生以后,在30年内发生特大洪水的概率是0.8,在40年内发生特大洪水的概率是0.85.现该 地区已无特大洪水过去了30年,在未来10年内该地区将发生特大洪水的概率是(  )
A.0.25B.0.30C.0.35D.0.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=(m-1)+(m+1)i(i为虚数单位)为纯虚数,其中m∈R,则|z|=(  )
A.2B.4C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案