如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。
科目:高中数学 来源: 题型:解答题
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为.
(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线在轴上的截距为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.
(1)求抛物线方程;
(2)如果使“蝴蝶形图案”的面积最小,求的大小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的方程为,双曲线的两条渐近线为、.过椭圆的右焦点作直线,使,又与交于点,设与椭圆的两个交点由上至下依次为、.
(1)若与的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,其左焦点到点的距离为.
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆交于不同的两点、,则内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点(,是常数),且动点到轴的距离比到点的距离小.
(1)求动点的轨迹的方程;
(2)(i)已知点,若曲线上存在不同两点、满足,求实数的取值范围;
(ii)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com