精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数(其中)满足下列3个条件:

函数的图象过坐标原点

②函数的对称轴方程为

③方程有两个相等的实数根,

.

1求函数的解析式;

2)求使不等式恒成立的实数的取值范围;

3已知函数上的最小值为,求实数的值.

【答案】1 ;(2;(3.

【解析】试题分析:(1)利用f(0)=0求出c.通过函数的对称轴,得到a=b,通过方程f(x)=x有两个相等的实数根,即可求函数f(x)的表达式;

(2)不等式恒成立,即,即

3,讨论对称轴与区间端点的关系,明确函数的最小值,求出实数的值.


试题解析:

解: (1)由题意得,即.

∵函数的对称轴方程为,即.

∵方程仅有一根,即方程仅有一根,

,即,即

(2)

又不等式img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/18/b2dfd3c7/SYS201712291823161438430040_DA/SYS201712291823161438430040_DA.026.png" width="68" height="27" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />恒成立

即不等式恒成立

解得.

(3)

则函数的对称轴方程为

时,函数上单调递增.

解得故舍去.

②当时,函数上单调递减,在上单调递增.

,解得(舍去)

③当时,函数上单调递减

解得.

综上: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果对任意的,都有成立,则称阶伸缩函数.

)若函数为二阶伸缩函数,且当时, ,求的值.

)若为三阶伸缩函数,且当时, ,求证:函数上无零点.

)若函数阶伸缩函数,且当时, 的取值范围是,求上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考四川,文21】已知函数f(x)-2lnx+x2-2ax+a2,其中a>0.

()设g(x)为f(x)的导函数,讨论g(x)的单调性;

()证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设椭圆的离心率为,其左焦点与抛物线的焦点相同.

1)求此椭圆的方程;

2)若过此椭圆的右焦点的直线与曲线只有一个交点,则

求直线的方程;

椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为,鲑鱼的耗氧量的单位数为,研究中发现成正比,且当时,

1)求出关于的函数解析式;

2)计算一条鲑鱼的游速是时耗氧量的单位数;

3)当鲑鱼的游速增加时,其耗氧量是原来的几倍?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),

(1)求实数的取值范围以及直线的方程;

(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;

(3)已知N(0,3),若圆C上存在两个不同的点P,使,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医用放射性物质原来质量a每年衰减的百分比相同,衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余为原来的

(1)求每年衰减的百分比;

(2)到今年为止,该放射性物质衰减了多少年?

(3)今后至多还能用多少年?

查看答案和解析>>

同步练习册答案