【题目】已知函数.
(1)若为锐角,, ,求及的值;
(2)函数,若对任意都有恒成立,求实数的最大值;
(3)已知,,求及的值.
【答案】(1);(2);(3)
【解析】
(1)根据同角三角函数的关系和二倍角的余弦公式可求得的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解的值;
(2)由余弦函数的有界性求得的值域,再将不等式分离参数,并令,可得对恒成立.易知函数在单调递增,求出其最小值,则可得,从而求得的最大值;
(3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成,再结合,即可求出及的值.
解:(1),且为锐角,
,,
则,
又,为锐角,
,,
;
(2),
对任意恒成立,
即对任意恒成立,
令,
对恒成立,
又函数在单调递增,
当时,,
,则的最大值为;
(3),
即 ,
,
,
,
又,
,
则,
,
即,
,
又,,
.
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为2,、分别为棱、上的点,且与顶点不重合.
(1)若直线与相交于点,求证:、、三点共线;
(2)若、分别为、的中点.
(ⅰ)求证:几何体为棱台;
(ⅱ)求棱台的体积.
(附:棱台的体积公式,其中、分别为棱台上下底面积,为棱台的高)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.
(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:
计算说明哪位运动员的成绩更稳定.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校某班在一次数学测验中,全班N名学生的数学成绩的频率分布直方图如下,已知分数在110~120的学生有14人.
(1)求总人数N和分数在120~125的人数n;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国明代商人程大位对文学和数学也颇感兴趣,他于60岁时完成杰作直指算法统宗,这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文就是:“今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少米?”请你计算甲应该分得
A. 78石 B. 76石 C. 75石 D. 74石
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com