精英家教网 > 高中数学 > 题目详情
过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为原点,则△OAB的外接圆方程是(  )
A、(x-2)2+(y-1)2=5
B、(x-4)2+(y-2)2=20
C、(x+2)2+(y+1)2=5
D、(x+4)2+(y+2)2=20
考点:直线与圆的位置关系
专题:直线与圆
分析:由题意知OA⊥PA,BO⊥PB,四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,△AOB外接圆就是四边形AOBP的外接圆.
解答: 解:由题意知,OA⊥PA,BO⊥PB,
∴四边形AOBP有一组对角都等于90°,
∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,
∵OP的中点为(2,1),OP=2
5

∴四边形AOBP的外接圆的方程为  (x-2)2+(y-1)2=5,
∴△AOB外接圆的方程为 (x-2)2+(y-1)2=5.
故选:A
点评:本题考查圆的标准方程的求法,把求△AOB外接圆方程转化为求四边形AOBP的外接圆方程,体现了转化的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前项和为Sn,满足an+Sn=2n
(Ⅰ)求证:数列{an-2}是等比数列
(Ⅱ)若不等式2λ-λ2>(2n-3)(2-an)对任意的正整数恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x>4,q:x>5,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-(x-3)2+18在[2,6]的最大值和最小值分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2m
+
y2
9m
=1表示焦点在y轴上的椭圆,命题q:双曲线
y2
5
-
x2
m
=1的离心率e∈(
6
2
2
),若命题p,q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x-b零点x0∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是(  )
A、-1B、-2C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,f(
π
2
)=(  )
A、
2
B、
3
C、2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),
b
=(-1,2),
c
=(2,-1).
(Ⅰ)求|
a
+
b
+
c
|的值;
(Ⅱ)设向量
p
=
a
+2
b
q
=
a
-2
b
,求向量
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=x2+2x-1,x∈[1,2],则f(x)是(  )
A、[1,2]上的增函数
B、[1,2]上的减函数
C、[2,3]上的增函数
D、[2,3]上的减函数

查看答案和解析>>

同步练习册答案