精英家教网 > 高中数学 > 题目详情

证明时,假设当时成立,则当时,左边增加的项数为(     )

A.          B.         C.             D.

 

【答案】

D

【解析】解:n=k时,不等式的左边等于 1+1 /2 +1 /3 +1 /4 +…+1 /(2k-1) ,且 k∈N+,

当n=k+1时,不等式的左边等于 1+1 /2 +1/ 3 +1/ 4 +…+1 /2k-1 +(1 /2k +1 /(2k+1) +1/ (2k +2) +…+1 /(2k +2k -1 )),

当n=k+1时,不等式的左边比n=k时增加的向为1 /2k +1 /(2k+1) +1/ (2k +2) +…+1 /(2k +2k -1 ) ,共增加了 2k 项.

故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明  ,假设时成立,当时,左端增加的项数是(    ).

A.项                B.项    C.项                   D.

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中理科数学试卷(解析版) 题型:选择题

对于不等式某同学应用数学归纳法证明的过程如下:

(1)当时,,不等式成立

(2)假设时,不等式成立,即

那么时,

不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法(     )

A.过程全部正确           B.验证不正确

C.归纳假设不正确         D.从的推理不正确

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第五次阶段考试理科数学试卷(解析版) 题型:解答题

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

同步练习册答案