精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

【答案】(1)见解析;(2)见解析;(3)

【解析】

(1)根据线面垂直得到线线垂直;(2)由等腰三角形的性质得到由(1)推得,故,进而得到结果;(3)过点EEFAC,垂足为.过点FFGAB,垂足为G.连结EG,是二面角的一个平面角,根据直角三角形的性质求解即可.

.

易知,故

(1)证明:底面

,故

,故

(2)证明:,故

的中点,故

由(1)知,从而,故

易知,故

(3)过点E作EF⊥AC,垂足为.过点F作FG⊥AB,垂足为G.连结EG

∵PA⊥AC, ∴PA//EF ∴EF⊥底面且F是AC中点

∴故是二面角的一个平面角.

,则PA=BC=,EF=AF=

从而FG=,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有两个点为椭圆的顶点,一个点为椭圆的焦点.

(1)求椭圆的方程;

(2)若斜率为1的直线与椭圆交于不同的两点,且,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 对任意 不等式恒成立,则正数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数, 为自然对数的底数).

1)当时,求函数的单调区间;

2)若函数内存在三个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}与{bn}满足:①a1=a<0,b1=b>0,②当k≥2时,若ak1+bk1≥0,则ak=ak1 , bk= ;若ak1+bk1<0,则ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)设Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 对任意正整数k,当2≤k≤n时,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),设函数f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为(

A.2016
B.2
C.
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案