精英家教网 > 高中数学 > 题目详情
15.如图,沿等腰直角三角形ABC的中位线DE,将平面ADE折起,使得平面ADE⊥平面BCDE,并得到四棱锥A-BCDE.
(Ⅰ)求证:平面ABC⊥平面ACD;
(Ⅱ)M是棱CD的中点,过M的与平面ABC平行的平面α,设平面α截四棱锥A-BCDE所得截面面积为S1,三角形ABC的面积为S2,试求S1:S2的值.

分析 (1)AD⊥DE,平面ADE⊥平面BCDE,根据两个平面垂直的性质定理得AD⊥平面BCDE,所以AD⊥BC,又CD⊥BC,根据线面垂直的判定定理BC⊥平面ACD,BC?平面ABC,所以平面ABC⊥平面ACD
(2)由于平面α∥平面ABC,故平面ACD与平面α的交线MQ∥AC,M是CD的中点,故Q是AD的中点;同理平面BCDE与平面α的交线MN∥BC,N为BE的中点;平面ABE的交线NP∥AB,P为AE的中点,连接PQ即为平面α与平面ADE的交线,故平面α与四棱锥A-BCDE各个面的交线所围成多边形就是四边形MNPQ,进一步观察可知四边形MNPQ是直角梯形,进而由比例关系可以求得截面面积与△ABC的面积之比.

解答 解:(1)∵AD⊥DE,平面ADE⊥平面BCDE,平面ADE∩平面BCDE=DE,
∴AD⊥平面BCDE,
∴AD⊥BC,
又∵CD⊥BC,AD∩CD=D,
∴BC⊥平面ACD,
又∵BC?平面ABC,
∴平面ABC⊥平面ACD
(2)∵平面α∥平面ABC,设平面ACD与平面α的交线为MQ,
∴MQ∥AC,
又∵M是CD的中点,
∴Q是AD的中点;
同理:设平面BCDE与平面α的交线为MN,
∴MN∥BC,
又∵M是CD的中点,
∴N为BE的中点;
同理:平面ABE的交线NP∥AB,P为AE的中点,
连接PQ即为平面α与平面ADE的交线,故平面α与四棱锥A-BCDE各个面的交线所围成多边形是图中的四边形MNPQ,
由于PQ∥DE,DE∥MN,故PQ∥MN,根据(1)BC⊥AC,由MN∥BC,MQ∥AC,故MQ⊥MN,即四边形MNPQ′是直角梯形.
设CM=a,则MQ=$\sqrt{2}$a,MN=3a,PQ=a,BC=4a,AC=2$\sqrt{2}$a,
故四边形MNPQ的面积是$\frac{a+3a}{2}×\sqrt{2}a$=$2\sqrt{2}{a}^{2}$,三角形ABC的面积是$\frac{1}{2}×4a×2\sqrt{2}a$=4$\sqrt{2}$a2
故平面α与四棱锥A-BCDE各个面的交线所围成多边形的面积与三角形ABC的面积之比为1:2.

点评 本小题主要考查空间线面关系、多边形的面积计算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若角α的终边经过点P(-1,3),则tanα的值为(  )
A.$-\frac{1}{3}$B.-3C.$-\frac{{\sqrt{10}}}{10}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程x±$\sqrt{3}$y=0,则C1与C2的离心率之积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知过抛物线方程y2=2px,过焦点F的直线l斜率为k(k>0)与抛物线交于A,B两点,满足$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,又$\overrightarrow{AF}=2\overrightarrow{FB}$,则直线l的方程为y=2$\sqrt{2}$(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$tan(α+β)=\frac{1}{2},tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{1}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,当$x∈(0,\frac{π}{2})$时,与函数$y={x^{-\frac{1}{3}}}$单调性相同的函数为(  )
A.y=cosxB.$y=\frac{1}{cosx}$C.y=tanxD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$α+β=\frac{2π}{3},α>0,β>0$,当sinα+2sinβ取最大值时α=θ,则cosθ=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某班现有学生40人,其中15人喜爱篮球运动,20人喜爱排球运动,另有10人对这两项运动都不感兴趣(即均不喜爱),则该班喜爱排球运动但不喜爱蓝球运动的人数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面为矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E为侧棱PC的中点,则异面直线AE与PD所成角的余弦值为(  )
A.$\frac{{\sqrt{30}}}{10}$B.$-\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{5}$D.$-\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

同步练习册答案