精英家教网 > 高中数学 > 题目详情

【题目】一个袋子里装有7个球,其中有红球4.白球3.这些球除颜色外全相同.

1)若一次从袋中取出3个球,取出的球颜色不完全相同的概率;

2)若一次从袋中取出3个球.其中若取到红球得0分,取到白球得1分,记随机变量为取出的三个小球得分之和,求的分布列,并求其数学期望.

【答案】1;(2)分布列见解析,.

【解析】

1)根据组合知识可知一次从袋中取出3个球的基本事件总数为,分类可知取出的球颜色不完全相同的取法总数,利用古典概型求解即可;

2的可能取值为0,1,2,3,利用古典概型分别计算其概率,列出分布列,求期望即可.

1)一次从袋中取出3个球的基本事件总数为.

设“取出的球颜色不完全相同”为事件A,共有两大类,

两红一白:,两白一红:

.

23个红球得0分:

21白得1分:

12白得2分:

3个白球得3分:

0

1

2

3

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5/千克时,每日可售出该商品11千克.

(1) 的值;

(2) 若商品的成品为3/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心C在直线.

1)求C圆的方程;

2)直线l过圆C外一点,且直线l与圆C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCDEPB的中点.

1)证明:平面平面PBC

2)求直线PD与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

质量指标值

频数

6

26

38

22

8

(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;

(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).

质量指标值分组

频数

频率

6

0.06

合计

100

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(c为常数),且f(1)=0.

(1)求c的值;

(2)证明函数f(x)在[0,2]上是单调递增函数;

(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

同步练习册答案