精英家教网 > 高中数学 > 题目详情
已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2
分析:根据二次函数开口向下,对称轴是x=
3
2
,作出函数草图即可求解.
解答:解:由于f(x)=ax2-3ax+a2-1(a<0)的图象开口向下,对称轴是x=
3
2

故函数在(-∞,
3
2
]
上为增函数,在(
3
2
,+∞)
上为减函数,
又由f(-3)=f(6),6>3>
3
2

故f(6)<f(3)<f(
3
2
),
则f(-3)<f(3)<f(
3
2
).
故答案为:f(-3)<f(3)<f(
3
2
).
点评:本题主要考查二次函数的单调性,还考查了基本函数的研究,要注意数形结合的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

同步练习册答案