【题目】执行下面的程序框图,若p=0.95,则输出的n=( )
A.4
B.5
C.6
D.7
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3x , f(a+2)=27,函数g(x)=λ2ax﹣4x的定义域为[0,2].
(1)求a的值;
(2)若λ=2,试判断函数g(x)在[0,2]上的单调性,并加以证明;
(3)若函数g(x)的最大值是 ,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足a1=1, (n∈N+).
(1)证明:数列 是等差数列;
(2)求数列{an}的通项公式an;
(3)设bn=n(n+1)an , 求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a元(a>0).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)如图,椭圆经过点,离心率,直线l的方程为.
(1)求椭圆C的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记、、的斜率分别为、、.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com