¶ÔÓÚÊýÁÐ{An}£ºA1£¬A2£¬A3£¬¡­£¬An£¬Èô²»¸Ä±äA1£¬½ö¸Ä±äA2£¬A3£¬¡­£¬AnÖв¿·ÖÏîµÄ·ûºÅ£¬µÃµ½µÄÐÂÊýÁÐ{an}³ÆΪÊýÁÐ{An}µÄÒ»¸öÉú³ÉÊýÁУ®Èç½ö¸Ä±äÊýÁÐ1£¬2£¬3£¬4£¬5µÄµÚ¶þ¡¢ÈýÏîµÄ·ûºÅ¿ÉÒԵõ½Ò»¸öÉú³ÉÊýÁÐ1£¬-2£¬-3£¬4£¬5£®ÒÑÖªÊýÁÐ{an}ΪÊýÁÐ{
1
2n
}(n¡ÊN*)
µÄÉú³ÉÊýÁУ¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}µÄͨÏʽΪan=
1
2n
£¬n=3k+1
-
1
2n
£¬n¡Ù3k+1
£¬k¡ÊN
£¬ÇóSn£»
£¨3£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
2m-1
2n
£¬m¡ÊN*£¬m¡Ü2n-1}
£®
·ÖÎö£º£¨1£©ÒÀÌâÒ⣬¿ÉµÃa2=¡À
1
4
£¬a3=¡À
1
8
£¬´Ó¶ø¿ÉÇóµÃS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÀûÓÃan=
1
2n
£¬n=3k+1
-
1
2n
£¬n¡Ù3k+1
£¬k¡ÊN
£¬·Ön=3k¡¢n=3k+1Óën=3k+2£¨k¡ÊN*£©ÌÖÂÛ£¬ÀûÓ÷Ö×éÇóºÍÓëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉÇóµÃSn£»
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¢Ùµ±n=1ʱ£¬Ò×Ö¤ÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬È¥Ö¤Ã÷n=k+1ʱÃüÌâÒ²³ÉÁ¢¼´¿É£®
½â´ð£º£¨1£©ÓÉÒÑÖª£¬a1=
1
2
£¬|an|=
1
2n
£¨n¡ÊN*£¬n¡Ý2£©£¬
¡àa2=¡À
1
4
£¬a3=¡À
1
8
£¬
ÓÉÓÚ
1
2
+
1
4
+
1
8
=
7
8
£¬
1
2
+
1
4
-
1
8
=
5
8
£¬
1
2
-
1
4
+
1
8
=
3
8
£¬
1
2
-
1
4
-
1
8
=
1
8

¡àS3¿ÉÄÜֵΪ
1
8
£¬
3
8
£¬
5
8
£¬
7
8
£®
£¨2£©¡ßan=
1
2n
£¬n=3k+1
-
1
2n
£¬n¡Ù3k+1
£¬k¡ÊN

¡àn=3k£¨k¡ÊN*£©Ê±£¬Sn=£¨
1
21
-
1
22
-
1
23
£©+£¨
1
24
-
1
25
-
1
26
£©+¡­+£¨
1
23k-2
-
1
23k-1
-
1
23k
£©
=£¨
1
21
+
1
24
+¡­+
1
23k-2
£©-£¨
1
22
+
1
25
+¡­+
1
23k-1
£©-£¨
1
23
+
1
26
+
1
23k
£©
=
1
2
[1-(
1
23
)
k
]
1-
1
23
-
1
22
[1-(
1
23
)
k
]
1-
1
23
-
1
23
[1-(
1
23
)
k
]
1-
1
23

=
8
7
[1-(
1
8
)
k
]£¨
1
2
-
1
4
-
1
8
£©
=
1
7
[1-(
1
2
)
n
]£»
n=3k+1£¨k¡ÊN£©Ê±£¬Sn=Sn-1+an=
1
7
[1-(
1
2
)
n
]+
1
2n
=
1
7
[1+5(
1
2
)
n
]£»
n=3k+2£¨k¡ÊN£©Ê±£¬Sn=Sn+1-an+1=
1
7
[1-(
1
2
)
n+1
]+
1
2n+1
=
1
7
[1+3(
1
2
)
n
]£»
¡àSn=
1
7
(1-
1
2n
)£¬n=3k
1
7
(1+
5
2n
)£¬n=3k+1
1
7
(1+
3
2n
)£¬n=3k+2
(k¡ÊN)
£®
£¨3£©¢Ùn=1ʱ£¬S1=
1
2
£¬ÃüÌâ³ÉÁ¢£®             
¢Ú¼ÙÉèn=k£¨k¡Ý1£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
2m-1
2k
£¬m¡ÊN*£¬m¡Ü2k-1}
ÓɼÙÉ裬Sk=
2m-1
2k
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬
Ôòµ±n=k+1£¬Sk+1=
1
2
¡À
1
22
¡À
1
23
¡À¡­+
1
2k
¡À
1
2k+1
=Sk¡À
1
2k+1
=
2k+1Sk¡À1
2k+1
£¬
ÓÖSk+1=
2k+1Sk¡À1
2k+1
=
2(2m-1)¡À1
2k+1
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬
¼´Sk+1=
2¡Á(2m-1)-1
2k+1
»òSk+1=
2¡Á(2m)-1
2k+1
£¨m¡ÊN*£¬m¡Ü2k-1£©
¼´Sk+1=
2m-1
2k+1
£¨m¡ÊN*£¬m¡Ü2k£©¡àn=k+1ʱ£¬ÃüÌâ³ÉÁ¢£®
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
2m-1
2n
£¬m¡ÊN*£¬m¡Ü2n-1}£®
µãÆÀ£º±¾Ì⿼²éÊýѧ¹éÄÉ·¨£¬×ÅÖØ¿¼²é¶ÔÐÂÊýÁиÅÄîµÄÀí½â£¬¿¼²éÍÆÀí¡¢×ª»¯¡¢³éÏó˼άÓë´´ÐÂ˼άµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn=2an-3n£®
£¨1£©ÇóÊýÁÐ{an}µÄÊ×Ïîa1ÓëµÝÍƹØϵʽ£ºan+1=f£¨an£©£»
£¨2£©ÏÈÔĶÁÏÂÃ涨Àí£º¡°ÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬ÔòÊýÁÐ{an-
B1-A
}
ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ®¡±ÇëÄãÔÚµÚ£¨1£©ÌâµÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢¶ÔÓÚÊýÁÐ{an}£¨n¡ÊN+£¬an¡ÊN+£©£¬ÈôbkΪa1£¬a2£¬a3¡­akÖеÄ×î´óÖµ£¬Ôò³ÆÊýÁÐ{bn}ΪÊýÁÐ{an}µÄ¡°Í¹ÖµÊýÁС±£®ÈçÊýÁÐ2£¬1£¬3£¬7£¬5µÄ¡°Í¹ÖµÊýÁС±Îª2£¬2£¬3£¬7£¬7£®Óɴ˶¨Òå¿ÉÖª£¬¡°Í¹ÖµÊýÁС±Îª1£¬3£¬3£¬9£¬9µÄËùÓÐÊýÁÐ{an}¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚ³£ÊýM£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬anÓëan+1ÖÐÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚM£¬Ôò¼Ç×÷{an}?M£¬ÄÇôÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬¶¨ÒåÊýÁÐ{an+1-an}ΪÊýÁÐanµÄ¡°²îÊýÁС±Èôa1=1£¬{an}µÄ¡°²îÊýÁС±µÄͨÏʽΪ3n£¬ÔòÊýÁÐ{an}µÄͨÏʽan=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬¡°an£¬an+1£¬an+2£¨n=1£¬2£¬3¡­£©³ÉµÈ±ÈÊýÁС±ÊÇ¡°
a
2
n+1
=anan+2
¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸