精英家教网 > 高中数学 > 题目详情

【题目】四棱锥PABCD中,ABCDABBCABBC1PACD2PA⊥平面ABCDE在棱PB上.

(Ⅰ)求证:ACPD

(Ⅱ)若VPACE,求证:PD∥平面AEC

【答案】(Ⅰ)见解析;(Ⅱ)见解析

【解析】

I)过,判断出四边形为则方程,由此证得,结合证得平面,从而证得.

II)利用题目所给体积求得到平面的距离,连接,连接,通过证明,证得,由此证得平面.

(Ⅰ)过AAFDCF,∵ABCDABBCABBC1,∴四边形ABCF为正方形,则CFDFAF1

∴∠DAC90°,得ACDA,又PA⊥底面ABCDAC平面ABCD,∴ACPA

PAAD平面PADPAADA,∴AC⊥平面PAD,又PD平面PAD,∴ACPD

(Ⅱ)设E到平面ABCD的距离为h,则VPACE,得h

PA2,则PBEBPAh31.∵BC1CD2,∴DB,连接DBACO,连接OE

∵△AOB∽△COD,∴DOOB21,得DBOB31

PBEBDBOB,则PDOE.又OE平面AECPD平面AEC,∴PD∥平面AEC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,多边形ABCDEF,四边形ABCD为等腰梯形,,四边形ADEF为直角梯形,,以AD为折痕把等腰梯形ABCD折起,使得平面平面ADEF,如图2

(Ⅰ)证明:平面CDE

(Ⅱ)求直线BE与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

1)估计该社区居民最近一年来网购消费金额的中位数;

2)将网购消费金额在20千元以上者称为网购迷,补全下面的列联表,并判断有多大把握认为网购迷与性别有关系

总计

网购迷

20

非网购迷

45

总计

100

附:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,试讨论的单调性;

2)对任意时,都有成立,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,分别为的中点.

1)求证:平面

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F是拋物线C:y2=2px(p>0)的焦点,M(x0,1)C,|MF|=.

(1)p的值;

(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )

注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

同步练习册答案