精英家教网 > 高中数学 > 题目详情

函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时为增函数,且f(1)=0。

(1)求关于t的方程f(2t+5)=0的解;

(2)求不等式f[x(x-)]<0的解集。

 

 

 

【答案】

(1) t= -2或t= -3

(2)

 

【解析】(1)由奇函数性质可知f(-1)= -f(1)=0,

∴2t+5=1或2t+5= -1

∴t= -2或t= -3

(2)∵当x∈(0,+∞)时为增函数,所以当x∈(-∞,0)时也为增函数。

故0<t<1时f(t)<f(1),   t< -1时 f(t)<f( -1)

t>1时f(t)>f(1),    -1<t<0 时 f(t)>f(-1)

可知f(t)<0的解集为{t|t<-1或0<t<1}

所以f[x(x-)]<0的解集为{x|x(x-)<-1或0<x(x-)<1}

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:云南省模拟题 题型:解答题

设函数y=f(x)在区间D上的导函数为f′(x),f′(x)在区间D上的导函数为g(x)。若在区间D上,g(x)<0恒成立,则称函数f(x)在区间D上为“凸函数”。已知实数m是常数,
(Ⅰ)若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围;
(Ⅱ)若对满足|m|≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省株洲二中高三(下)第十一次月考数学试卷(理科)(解析版) 题型:解答题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源:2013年上海市黄浦区高考数学一模试卷(理科)(解析版) 题型:解答题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

同步练习册答案