【题目】试求最小的正整数,使得对于任何个连续正整数中,必有一数,其各位数字之和是7的倍数.
【答案】13
【解析】
首先,可以指出12个连续正整数,例如,994,995,…,999,1000,1001,…,1005,其中任意一个数的各位数字之和都不是7的倍数,因此,
再证,任何连续13个正整数中,必有一个数,其各位数字之和是7的倍数.
对每个非负整数,称如下10个数所构成的集合
为一个“基本段”.13个连续正整数,要么属于两个基本段,要么属于三个基本段.
当13个数属于两个基本段时,根据抽屉原理,其中必有连续的7个数属于同一个基本段;
当13个连续数属于三个基本段时,其中必有连续的10个数同属于.现在设
是属于同一个基本段的7个数,它们的各位数字之和分别是
显然,这7个和数被7除的余数互不相同,其中必有一个是7的倍数.
因此,所求的最小值为
科目:高中数学 来源: 题型:
【题目】詹姆斯·哈登(James Harden)是美国NBA当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖.2017-18赛季哈登当选常规赛MVP(最有价值球员).
年份 | 2012-13 | 2013-14 | 2014-15 | 2015-16 | 2016-17 | 2017-18 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
常规赛场均得分y | 25.9 | 25.4 | 27.4 | 29.0 | 29.1 | 30.4 |
(Ⅰ)根据表中数据,求y关于t的线性回归方程(,*);
(Ⅱ)根据线性回归方程预测哈登在2019-20赛季常规赛场均得分.
(附)对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,
(参考数据,计算结果保留小数点后一位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在,上单调递增,求实数的取值范围;
(2)若函数在处的切线平行于轴,是否存在整数,使不等式在时恒成立?若存在,求出的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.
(1)求a的值;
(2)求函数f(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过的有40人,不超过的有15人;在45名女性驾驶员中,平均车速超过的有20人,不超过的有25人.
(1)完成下面的列联表,并判断是否有%的把握认为平均车速超过的人与性别有关.
平均车速超过人数 | 平均车速不超过人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.
参考公式与数据:
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图是正方体的平面展开图.在这个正方体中,
①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.
以上四个命题中,正确命题的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com