精英家教网 > 高中数学 > 题目详情

【题目】试求最小的正整数,使得对于任何个连续正整数中,必有一数,其各位数字之和是7的倍数.

【答案】13

【解析】

首先,可以指出12个连续正整数,例如,994,995,…,999,1000,1001,…,1005,其中任意一个数的各位数字之和都不是7的倍数,因此,

再证,任何连续13个正整数中,必有一个数,其各位数字之和是7的倍数.

对每个非负整数,称如下10个数所构成的集合

为一个基本段”.13个连续正整数,要么属于两个基本段,要么属于三个基本段.

13个数属于两个基本段时,根据抽屉原理,其中必有连续的7个数属于同一个基本段;

13个连续数属于三个基本段时,其中必有连续的10个数同属于.现在设

是属于同一个基本段的7个数,它们的各位数字之和分别是

显然,这7个和数被7除的余数互不相同,其中必有一个是7的倍数.

因此,所求的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】詹姆斯·哈登(James Harden)是美国NBA当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖.2017-18赛季哈登当选常规赛MVP(最有价值球员).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代码t

1

2

3

4

5

6

常规赛场均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根据表中数据,求y关于t的线性回归方程*);

(Ⅱ)根据线性回归方程预测哈登在2019-20赛季常规赛场均得分.

(附)对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

(参考数据,计算结果保留小数点后一位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递增,求实数的取值范围;

2)若函数处的切线平行于轴,是否存在整数,使不等式时恒成立?若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)求函数的单调递增区间;

(2)已知在ABC中,ABC的对边分别为abc,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过的有40人,不超过的有15人;在45名女性驾驶员中,平均车速超过的有20人,不超过的有25人.

(1)完成下面的列联表,并判断是否有%的把握认为平均车速超过的人与性别有关.

平均车速超过人数

平均车速不超过人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.

参考公式与数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的内切球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1CAB=3BC=5.

)求证:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)证明:在线段BC1存在点D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图是正方体的平面展开图在这个正方体中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四个命题中正确命题的序号是________

查看答案和解析>>

同步练习册答案