精英家教网 > 高中数学 > 题目详情
13.$\frac{1}{3}$(a+3x)=4(a-x),则x=$\frac{11a}{15}$..

分析 化简整理即可得出.

解答 解:∵$\frac{1}{3}$(a+3x)=4(a-x),
∴5x=4a-$\frac{1}{3}a$,
解得x=$\frac{11a}{15}$.
故答案为:$\frac{11a}{15}$.

点评 本题考查了一元一次方程的解法,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1>0,S3=S10,则当Sn取最大值时,n的值为(  )
A.6B.7C.6或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设随机变量X服从正态分布N(μ,σ2)(σ>0),若P(X<-1)+P(X<0)=1,则μ的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(-1,0),B(5,6),P(3,4),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,则λ=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在直角坐标系中,已知A(-1,3),$\overrightarrow{AB}$=(6.-2),则点B的坐标为(5,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.不论m、n取什么值,直线(3m-n)x+(m+2n)y-n=0必过一定点,试证明,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x、y满足|x-1|+|y|≤a(a>0),若x=2x+y的最大值为3,则z的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在直角梯形ABCD中,AB⊥AD,AB∥CD,E为CD中点,AB=2CD=4,若$\overrightarrow{AE}$•$\overrightarrow{BE}$=4,则$\overrightarrow{AC}$•$\overrightarrow{BC}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=a-sinx x∈(0,$\frac{5π}{2}$)的图象与过点(0,1)且平行于x轴的直线有两个交点,则实数a的取值范围是(0,1].

查看答案和解析>>

同步练习册答案