分析 根据同角三角函数关系式以及角象限符号的判断化简即可.
解答 解:由$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$+sinα$\sqrt{\frac{(1-cosα)^{2}}{1-co{s}^{2}α}}$=cosα$•\frac{1-sinα}{|cosα|}$+$\frac{1-cosα}{|sinα|}$,
∵α是第四象限角,
∴|cosα|=cosα,|sinα|=-sinα,
故得$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα,
故答案为:cosα-sinα,
点评 本题主要考查了同角三角函数关系式以及角象限符号的判断,属于基础知识的考查.
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{12}$ | B. | -$\frac{π}{6}$ | C. | 0 | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ac>bc | B. | $\frac{1}{a}<\frac{1}{b}$ | C. | a2>b2 | D. | a3>b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 5 | D. | 无数个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com