精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

【答案】
(1)

解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣ = (x>0),

当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;

当a>0时,由f′(x)=0,得x= =

∴当x∈(0, )时,f′(x)<0,当x∈( ,+∞)时,f′(x)>0,

则f(x)在(0, )上为减函数,在( ,+∞)上为增函数;

综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0, )上为减函数,在( ,+∞)上为增函数;


(2)

证明:要证g(x)>0(x>1),即 >0,

即证 ,也就是证

令h(x)= ,则h′(x)=

∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,

即当x>1时,h(x)>e,∴当x>1时,g(x)>0;


(3)

解:由f(x)>g(x),得

设t(x)=

由题意知,t(x)>0在(1,+∞)内恒成立,

∵t(1)=0,

∴有t′(x)=2ax = ≥0在(1,+∞)内恒成立,

令φ(x)=

则φ′(x)= =

当x≥2时,φ′(x)>0,

令h(x)= ,h′(x)= ,函数在[1,2)上单调递增,∴h(x)min=h(1)=﹣1.

又2a≥1,e1x>0,∴1<x<2,φ′(x)>0,

综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,

∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,

∴a≥


【解析】(1)求导数,分类讨论,即可讨论f(x)的单调性;
(2)要证g(x)>0(x>1),即 >0,即证 ,也就是证
(3)由f(x)>g(x),得 ,设t(x)= ,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围;
本题考查导数知识的综合运用,考查函数的单调性,不等式的证明,考查恒成立成立问题,正确构造函数,求导数是关键.
【考点精析】解答此题的关键在于理解函数的奇偶性的相关知识,掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称,以及对利用导数研究函数的单调性的理解,了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若 的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的a值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;
(3)估计居民月均用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(ax+1)(x≥0,a>0), .

(1)讨论函数y=f(x)-g(x)的单调性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)时恒成立,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数fx)=ax2+x

(Ⅰ)当a>0时,求证:对任意的x1x2R都有[fx1)+fx2)]成立;

(Ⅱ)当x∈[0,2]时,|fx)|≤1恒成立,求实数a的取值范围;

(Ⅲ)若a=,点pmn2)(mZnZ)是函数y=fx)图象上的点,求mn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C: =1(a>b>0)的离心率是 ,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线l与y轴交于点G,记△PFG的面积为S1 , △PDM的面积为S2 , 求 的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

同步练习册答案