精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=4,c=2$\sqrt{3}$,cosA=sin1380°,则a等于(  )
A.7B.2$\sqrt{13}$C.2$\sqrt{6}$D.2

分析 由已知利用诱导公式,特殊角的三角函数值可求cosA的值,利用余弦定理即可解得a的值.

解答 解:∵b=4,c=2$\sqrt{3}$,cosA=sin1380°=sin300°=-sin60°=-$\frac{\sqrt{3}}{2}$,
∴由余弦定理可得:a2=b2+c2-2bccosA=16+12-2×$4×2\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)=52,
∴解得:a=2$\sqrt{13}$.
故选:B.

点评 本题主要考查了诱导公式,特殊角的三角函数值,余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若圆x2+y2-2x+4y+1=0上至少有两个点到直线2x+y-c=0的距离等于1,则实数c的取值范围为(  )
A.$(0,3\sqrt{5})$B.$[-\sqrt{5},\sqrt{5}]$C.$(-3\sqrt{5},3\sqrt{5})$D.$(0,\sqrt{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C1:x2+y2=1,圆C2:x2+y2+4x-6y+4=0,则圆C1与圆C2的位置关系是(  )
A.外离B.相切C.相交D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f′(x)是函数f(x)在R上的导函数,函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,m+1),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.-1C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若2cos(θ-$\frac{π}{3}$)=3cosθ,则tan2θ=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于平面向量,给出下列四个命题:
①单位向量的模都相等;
②对任意的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,式子|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定成立;
③两个有共同的起点且相等的向量,其终点必定相同;
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.
其中正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是(  )
A.0.3B.0.55C.0.75D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x与y之间的几组统计数据如下表:
x23456
y611141618
根据上表数据所得线性回归方程为$\stackrel{∧}{y}$=2.5x+a,据此模型推算当x=7时,$\stackrel{∧}{y}$的值为(  )
A.20B.20.5C.21D.21.5

查看答案和解析>>

同步练习册答案