精英家教网 > 高中数学 > 题目详情
设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R恒成立,则


③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是    (写出所有正确结论的编号).
【答案】分析:先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到x=是三角函数的对称轴,将其代入整体角令整体角等于kπ+求出辅助角θ,再通过整体处理的思想研究函数的性质.
解答:解:∵f(x)=asin2x+bcos2x=sin(2x+θ)

∴2×+θ=kπ+
∴θ=kπ+
∴f(x)═sin(2x+kπ+)=±sin(2x+
对于①sin(2×+)=0,故①对
对于②,|f()|>|f()|,故②错
对于③,f(x)不是奇函数也不是偶函数
对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对
对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,
且|b|>,此时平方得b2>a2+b2这不可能,矛盾,
∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错
故答案为:①③.
点评:本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=Asin(ωx+φ)(A>0,ω>0)的图象关于直线x=
π3
对称,它的最小正周期是π,则f(x)图象上的一个对称中心是
 
(写出一个即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

13、设f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β是常数),且f(2009)=5,则f(2010)=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a、b、α、β∈R且ab≠0,若f(2009)=5.则f(2010)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β)+5,且f(2009)=2,则f(2010)=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数.若f(2012)=-1,则f(2013)=
 

查看答案和解析>>

同步练习册答案