【题目】已知函数f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函数f(x)的最大值记为g(m),则g(m)的最小值为( )
A.﹣
B.1
C.3﹣
D. ﹣1
【答案】D
【解析】解:函数f(x)= mcos2x+(m﹣2)sinx,
化简可得:f(x)= m(1﹣2sin2x)+(m﹣2)sinx=
m﹣msin2x+(m﹣2)sinx=
m﹣[msin2x+(2﹣m)sinx],
令y=msin2x+(2﹣m)sinx,
∵1≤m≤2,开口向上,
对称轴sinx= ,
∴ ≤sinx≤0.
故当sinx= 时,f(x)取得最大值为g(m)=
﹣m×(
)2+(m﹣2)×
=
.
由 =
,(当且仅当
,即m=
时取等号)
故得g(m)的最小值为: .
故选:D.
【考点精析】根据题目的已知条件,利用三角函数的最值的相关知识可以得到问题的答案,需要掌握函数,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
.
科目:高中数学 来源: 题型:
【题目】我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)过点(
,1),且焦距为2
.
(1)求椭圆C的方程;
(2)若直线l:y=k(x+1)(k>﹣2)与椭圆C相交于不同的两点A、B,线段AB的中点M到直线2x+y+t=0的距离为 ,求t(t>2)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有 是“年轻人”.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆M: (a>b>0)的一个焦点为F(1,0),离心率为
,过点F的动直线交M于A,B两点,若x轴上的点P(t,0)使得∠APO=∠BPO总成立(O为坐标原点),则t=( )
A.2
B.
C.
D.﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com