精英家教网 > 高中数学 > 题目详情
已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.
分析:欲求线段PQ的中点M的轨迹方程,先利用中点M的坐标反表示出P点的坐标,由点P在曲线C上,即求得到中点M的坐标的关系,从而解决问题.
解答:解:联立y=x2与y=x+2得xA=-1,xB=2,
则AB中点Q(
1
2
5
2
)

设线段PQ的中点M坐标为(x,y),
x=
1
2
+s
2
,y=
5
2
+t
2

s=2x-
1
2
,t=2y-
5
2
,又点P在曲线C上,
2y-
5
2
=(2x-
1
2
)2
化简可得y=2x2-x+
11
8

又点P是L上的任一点,且不与点A和点B重合,
-1<2x-
1
2
<2
,即-
1
4
<x<
5
4

∴中点M的轨迹方程为y=2x2-x+
11
8
-
1
4
<x<
5
4
).
点评:求曲线的轨迹方程是解析几何的基本问题,参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x2-2ax+y2-4y+a2+
5125
=0与D有公共点,试求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知曲线C:y=x2,则过点P(1,0)的曲线C的切线斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知曲线C:y=x2(x>0),过C上的点A1(1,1)作曲线C的切线l1交x轴于点B1,再过B1作y轴的平行线交曲线C于点A2,再过A2作曲线C的切线l2交x轴于点B2,再过B2作y轴的平行线交曲线C于点A&3,…,依次作下去,记点An的横坐标为an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=(8-2n)an,设数列{bn}的前n项和为Tn,求证:0<Tn≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y 轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn
(Ⅰ) 求a2与an
(Ⅱ) 求Sn,并证明Sn
13

查看答案和解析>>

同步练习册答案