精英家教网 > 高中数学 > 题目详情
9.已知直线l1,l2,l3的斜率分别是k1,k2,k3,其中l1∥l2,且k1,k3是方程2x2-3x-2=0的两根,则k1+k2+k3的值是(  )
A.1B.$\frac{3}{2}$C.$\frac{7}{2}$D.1或$\frac{7}{2}$

分析 根据韦达定理求出k1和k3的值,从而求出k2的值,进而求出答案.

解答 解:若k1,k3是方程2x2-3x-2=0的两根,
则k1+k3=$\frac{3}{2}$,k1•k3=-1,
解得k1=-$\frac{1}{2}$,k3=2,或k1=2,k3=-$\frac{1}{2}$,
由l1∥l2,则k1=k2
则k1+k2+k3的值为1或$\frac{7}{2}$,
故选:D.

点评 本题考查了韦达定理,考查直线的位置关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且满足${a_{n+1}}={S_n}+{2^{n+1}}$(n∈N*).
(Ⅰ)证明数列$\{\frac{S_n}{2^n}\}$为等差数列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O,D分别是AC,PC的中点,OP⊥底面ABC.
(1)求证:OD∥平面PAB;
(2)当k=$\frac{1}{2}$时,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$\frac{cos65°-sin80°sin15°}{cos5°-cos10°sin75°}$=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,长轴长为4,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点
(1)求椭圆G的方程;
(2)将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(3,2),点M到F($\frac{1}{2}$,0)的距离比它到y轴的距离大$\frac{1}{2}$.
(1)求点M的轨迹方程;
(2)是否存在M,使|MA|+|MF|取得最小值?若存在,求此时点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,A,B的坐标分别为(-1,2),(4,3),AC的中点M在y轴上,BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设a=0.50.5,b=0.30.5,c=log0.30.2,则a,b,c按从小到大的顺序排列为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=2cos(ωx-$\frac{π}{2}$)cos(${ωx+\frac{π}{6}}$)+2sin2ωx-1(ω>0),直线y=$\frac{1}{2}$与f(x)的图象交点之间最短距离为π.
(Ⅰ) 求f(x)的解析式及单调递增区间;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c若有(2a-c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.

查看答案和解析>>

同步练习册答案