精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC
(1)求角B的大小;
(2)设向量
m
=(sinA,cos2A),
n
=(6,1)
,求
m
n
的最大值.
分析:(1)利用正弦定理,结合A、B的范围求出求角B的大小;
(2)设向量
m
=(sinA,cos2A),
n
=(6,1)
,直接化简
m
n
,通过配方求出表达式,在sinA=1(A=
π
2
)
取得的最大值,即可.
解答:解:(1)∵(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinBcosC+cosBsinC,
∴2sinAcosB=sinA.(3分)
又在△ABC中,A,B∈(0,π),
所以sinA>0,cosB=
1
2
,则B=
π
3
(6分)
(2)∵
m
n
=6sinA+cos2A=-2sin2A+6sinA+1,
m
n
=-2(sinA-
3
2
)2+
11
2
.(8分)
B=
π
3
,所以A∈(0,
3
)
,所以sinA∈(0,1].(10分)
所以当sinA=1(A=
π
2
)
时,
m
n
的最大值为5.(12分)
点评:本题是基础题,考查正弦定理的应用,向量的数量积,三角函数值的求法,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案