精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,对任意的m[22]fmx2+fx)<0恒成立,则x的取值范围为_____

【答案】

【解析】:由题意得,函数的定义域是R,

且f(﹣x)=(﹣x)3+(﹣x)=﹣(x3+x)=﹣f(x),

所以f(x)是奇函数,

又f'(x)=3x2+1>0,所以f(x)在R上单调递增,

所以f(mx﹣2)+f(x)<0可化为:f(mx﹣2)<﹣f(x)=f(﹣x),

由f(x)递增知:mx﹣2﹣x,即mx+x﹣2<0,

则对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,

等价于对任意的m∈[﹣2,2],mx+x﹣2<0恒成立,

所以,解得﹣2x

即x的取值范围是

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
(1函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2化简2 +lg5lg2+(lg2)2﹣lg2的结果为25;
(3若loga <1,则a的取值范围是(1,+∞);
(4若2x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x﹣4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P是x轴上一点,且△PAB的面积等于9,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosxsin(x﹣ )+
(1)求函数f(x)的对称轴方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈[﹣ ]上有三个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是(
A.f(x)=x﹣1,g(x)=
B.f(x)=2x﹣1,g(x)=2x+1
C.f(x)=x2 , g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中正确的有
①函数y= 的定义域是{x|x≠0};
②lg =lg(x﹣2)的解集为{3};
②31x﹣2=0的解集为{x|x=1﹣log32};
④lg(x﹣1)<1的解集是{x|x<11}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(2+x)+lg(2﹣x).

(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;

(2)记函数g(x)= +3x,求函数g(x)的值域;

(3)若不等式 f(x)m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2
(1)求x<0时f(x)的解析式;
(2)问是否存在正数a,b,当x∈[a,b]时,g(x)=f(x),且g(x)的值域为[ ]?若存在,求出所有的a,b的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案