精英家教网 > 高中数学 > 题目详情

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1 ,A2和1个白球B的甲箱与装有2个红球a1 ,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.

(1)用球的标号列出所有可能的摸出结果;

(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.

【答案】(1)见解析; (2)不正确.

【解析】

(1)中奖利用枚举法列出所有可能的摸出结果;

(2)在(1)中求出摸出的2个球都是红球的结果数,然后利用古典概型概率计算公式求得概率,并说明中奖的概率大于不中奖的概率是错误的.

(1)所有可能的摸出结果是:{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.

(2)不正确.理由如下:

由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为,不中奖的概率为1->

故这种说法不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究某种农作物在特定温度下要求最高温度满足:的生长状况某农学家需要在十月份去某地进行为期十天的连续观察试验现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度单位:的记录如下:

根据本次试验目的和试验周期写出农学家观察试验的起始日期

设该地区今年10月上旬101日至1010的最高温度的方差和最低温度的方差分别为估计的大小?直接写出结论即可

10月份31天中随机选择连续三天求所选3天每天日平均最高温度值[2730]之间的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过作直线交椭圆于两点,使,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在使得成立.

(1)函数是否属于集合M?说明理由;

(2)设函数,求的取值范围;

(3)已知函数图象与函数的图象有交点,根据该结论证明:函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E: (a>b>0)的左右焦点分别为F1、F2 , D为椭圆短轴上的一个顶点,DF1的延长线与椭圆相交于G.△DGF2的周长为8,|DF1|=3|GF1|.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的左顶点A作椭圆E的两条互相垂直的弦AB、AC,试问直线BC是否恒过定点?若是,求出此定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线 (t为参数,t∈R),曲线 (θ为参数,θ∈[0,2π]).
(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;
(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.

查看答案和解析>>

同步练习册答案