精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=loga(a-kax)(其中a>1,k>0)
(1)若k=1,求f(x)的定义域;
(2)若函数f(x)的定义域是集合{x|x≤1}的子集,求实数k的取值范围.

分析 (1)把k=1代入解析式,由对数函数真数必须为正列出不等式,由指数函数的性质求出f(x)的定义域;
(2)由对数函数真数必须为正列出不等式,由指数函数的性质求出f(x)的定义域,根据子集关系列出关于k的不等式,即可求出k的取值范围.

解答 解:(1)把k=1代入得,f(x)=loga(a-ax),
由a-ax>0得,ax<a,
因为a>1,所以x<1,
所以函数f(x)的定义域是(-∞,1);
(2)要使函数f(x)有意义,自变量x须满足:a-kax>0
因为k>0,所以ax<$\frac{a}{k}$,
由a>1得,x<loga$\frac{a}{k}$=1-logak
所以函数f(x)的定义域为(-∞,1-logak),
又函数f(x)的定义域是集合{x|x≤1}的子集,
所以1-logak≤1,则logak≥0=loga1,解得k≥1,
故满足条件的实数k的取值范围为[1,+∞).

点评 本题考查了对数函数的定义域,指数函数的性质,利用集合关系求出参数取值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=7,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=5或9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1表示焦点在x轴上且离心率小于$\frac{\sqrt{3}}{2}$的椭圆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{{\sqrt{{x^2}-1}}}{x-1}$的定义域是(  )
A.{x|-1≤x<1}B.{x|x≤-1或x>1}C.{x|-1≤x≤1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.周长为6,圆心角弧度为1的扇形面积等于(  )
A.1B.$\frac{3π}{2}$C.πD.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow a=({1,0,z})$与向量$\overrightarrow b=({2,1,2})$的夹角的余弦值为$\frac{2}{3}$,则z=0,$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是(  )
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,f(x)=${a}^{x}-\frac{1}{{a}^{x}}$
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明.

查看答案和解析>>

同步练习册答案