精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数, ),曲线的参数方程为为参数),以为极点, 轴的正半轴为极轴建立坐标系.

(1)求曲线的极坐标方程和曲线的普通方程;

(2)射线与曲线的交点为,与曲线的交点为,求线段的长.

【答案】(1) ;(2) .

【解析】试题分析:(1先将曲线的参数方程化为普通方程,利用可得曲线的极坐标方程,利用加减法消去参数可得曲线的普通方程;(2)通过方程组求出坐标然后利用极径的几何意义求解即可.

试题解析:(1)曲线的参数方程为为参数, ),

普通方程为),

极坐标方程为 ,曲线的参数方程为为参数),

普通方程

(2) ,即

代入曲线的极坐标方程,可得,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,左右焦点分别为,圆与直线相交所得弦长为2. 

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是椭圆上不在轴上的一个动点, 为坐标原点,过点的平行线交椭圆两个不同的点.

(1)试探究的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.

(2)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a﹣1)(ax﹣ax)(0<a<1).
(1)判断f(x的奇偶性;
(2)用定义证明f(x)为R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求值: . (2)求函数f(x)=的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x)的导函数为f′(x),且对于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,则(
A. f( )> f(
B.f( )>f(1)
C. f( )<f(
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.

(1)证明:C,E,F,D四点共圆;
(2)若D为BC的中点,且AF=3,FD=1,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1||l2 , 则x=( ).
A.2
B.-2
C.4
D.1

查看答案和解析>>

同步练习册答案