【题目】已知椭圆的左顶点为,右焦点为,直线与轴相交于点,且是的中点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点的直线与椭圆相交于两点,都在轴上方,并且在之间,且到直线的距离是到直线距离的倍.
①记的面积分别为,求;
②若原点到直线的距离为,求椭圆方程.
【答案】(1);(2)①;②.
【解析】
试题本题以直线与椭圆的位置关系为背景.第(1)小题设计为求椭圆的离心率,只需利用条件是的中点,可得,从而得.第(2)小题中第①题求,需要用等积法进行转化,即.第②题求椭圆方程,设直线方程为.注意到,和原点到直线的距离为,,从而可以确定,,的值.
试题解析:(1)因为是的中点,所以,即,又、,
所以,所以;
(2)①解法一:过作直线的垂线,垂足分别为,依题意,,
又,故,故是的中点,∴,
又是中点,∴,∴;
解法二:∵,∴,椭圆方程为,,,
设,,点在椭圆上,即有,
同理,
又,故得是的中点,∴,
又是中点,∴,∴;
②解法一:设,则椭圆方程为,
由①知是的中点,不妨设,则,
又都在椭圆上,即有 即
两式相减得:,解得,
可得,故直线的斜率为,
直线的方程为,即
原点到直线的距离为,
依题意,解得,故椭圆方程为.
解法二:设,则椭圆方程为,
由①知是的中点,故,
直线的斜率显然存在,不妨设为,故其方程为,与椭圆联立,并消去得:,整理得:,(*)
设,,依题意: ]
由 解得:
所以,解之得:,即.
直线的方程为,即
原点到直线的距离为,
依题意,解得,故椭圆方程为.
科目:高中数学 来源: 题型:
【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为和,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.
(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用、表示,记,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五一”期间,甲乙两个商场分别开展促销活动.
(Ⅰ)甲商场的规则是:凡购物满100元,可抽奖一次,从装有大小、形状相同的4个白球、4个黑球的袋中摸出4个球,中奖情况如下表:
摸出的结果 | 获得奖金(单位:元) |
4个白球或4个黑球 | 200 |
3个白球1个黑球或3个黑球1个白球 | 20 |
2个黑球2个白球 | 10 |
记为抽奖一次获得的奖金,求的分布列和期望.
(Ⅱ)乙商场的规则是:凡购物满100元,可抽奖10次.其中,第次抽奖方法是:从编号为的袋中(装有大小、形状相同的个白球和个黑球)摸出个球,若该次摸出的个球颜色都相同,则可获得奖金元;记第次获奖概率.设各次摸奖的结果互不影响,最终所获得的总奖金为10次奖金之和.
①求证:;
②若某顾客购买120元的商品,不考虑其它因素,从获得奖金的期望分析,他应该选择哪一家商场?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学单位时间内引体向上次数的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.
(Ⅰ)求的分布列及数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①“若,则”的逆否命题为真命题
②“”是“函数在区间上为增函数”的充分不必要条件
③若为假命题,则,均为假命题
④对于命题:,,则为:,
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com