精英家教网 > 高中数学 > 题目详情
14、a,b,c∈(0,+∞)且表示线段长度,则a,b,c能构成锐角三角形的充要条件是(  )
分析:要使a,b,c能构成锐角三角形,则三个角都为锐角,根据余弦定理进行判定即可.
解答:解:|a2-b2|<c2<a2+b2
变形得-c2<a2-b2<c2,a2+b2>c^2
c2+a2-b2>0…(1)
b2+c2-a2>0…(2)
a2+b2>c2…(3)
由(1)(2)(3)可得
c2+a2>b2
b2+c2>a2
a2+b2>c2
根据余弦定理,三个角都是锐角
反之也成立
故选:D
点评:判断充要条件的方法是:
①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;
②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;
③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;
④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数a,b,c,d;命题:
(1)若a>b,c>0,则ac>bc
(2)若ac2<bc2,则a<b
(3)若a>b,则ac2>bc2
(4)若a>b,则
1
a
1
b

(5)若a>b>0,c>d>0,则ac>bd
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>b>c>0,则2a2+
1
ab
+
1
a(a-b)
-12ac+36c2
最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+1),设a>b>c>0,则
f(a)
a
f(b)
b
f(c)
c
的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列符合三段论推理的形式的为(  )

查看答案和解析>>

同步练习册答案