分析 作出不等式组对应的平面区域,利用z的几何意义,即可求出z的最大值.
解答 解:作出不等式组$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥3\\ x-2y≤0\end{array}\right.$对应的平面区域如图:
设z=x+2y,则y=-$\frac{1}{2}$x+$\frac{z}{2}$
平移此直线,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{2}$经过A时,直线在y轴的截距最小,得到z最小,由$\left\{\begin{array}{l}{x-2y=0}\\{x+y=3}\end{array}\right.$得到A(2,1),
所以z=x+2y的最小值为2+2×1=4;
故答案为:4.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | (-9,1) | B. | (-9,1] | C. | [-1,1] | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{2}{3}$,+∞) | B. | ($\frac{2}{3}$,1)∪(1,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3x+2y-1=0 | B. | 3x+2y+7=0 | C. | 2x-3y+5=0 | D. | 2x-3y+8=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (1,2] | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①④ | B. | ②④ | C. | ②⑤ | D. | ③⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com