精英家教网 > 高中数学 > 题目详情

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

【答案】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4
故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;
(Ⅱ)已知样本中分数小于40的学生有5人,
故样本中分数小于40的频率为:0.05,
则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,
估计总体中分数在区间[40,50)内的人数为400×0.05=20人,
(Ⅲ)样本中分数不小于70的频率为:0.6,
由于样本中分数不小于70的男女生人数相等.
故分数不小于70的男生的频率为:0.3,
由样本中有一半男生的分数不小于70,
故男生的频率为:0.6,
即女生的频率为:0.4,
即总体中男生和女生人数的比例约为:3:2.
【解析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;
(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.
【考点精析】通过灵活运用频率分布直方图和用样本的频率分布估计总体分布,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一个港口,相邻两次高潮发生时间相距,低潮时水的深度为,高潮时为,一次高潮发生在10月10日4:00,每天涨潮落潮时,水的深度与时间近似满足关系式.

(1)若从10月10日0:00开始计算时间,选用一个三角函数来近似描述该港口的水深和时间之间的函数关系.

(2)10月10日17:00该港口水深约为多少?(精确到

(3)10月10日这一天该港口共有多长时间水深低于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2) 已知点的极坐标为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长

(1)写出第年(2018年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域

(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:

(1)画出散点图;

(2)根据如下的参考公式与参考数据,求利润额y与销售额x之间的线性回归方程;

(3)若该公司还有一个零售店某月销售额为10千万元,试估计它的利润额是多少?

(参考公式:,其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z0=2+2i,|zz0|=.

(1)求复数z在复平面内的对应点的轨迹;

(2)z为何值时|z|有最小值,并求出|z|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,1470编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ln4-x+1n2+x)的单调递增区间为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

同步练习册答案