精英家教网 > 高中数学 > 题目详情
(2012•浦东新区一模)已知正三棱锥O-ABC的底面边长为1,且侧棱与底面所成的角为60°,则此三棱锥的体积为
3
12
3
12
分析:三棱锥O-ABC的侧棱与底面ABC所成的角都是60°,故O-ABC是正三棱锥.由此入手,能够求出此三棱锥的体积.
解答:解:∵三棱锥O-ABC的侧棱与底面ABC所成的角都是60°,
∴O-ABC是正三棱锥.
过O作OG⊥平面ABC交于点G,延长AG交BC于D.
∵O-ABC是正三棱锥,
∴点G是△ABC的中心,
∴AD是等边△ABC的一条高,
∴AD=
3
2
BC=
3
2

∴AG=
2
3
AD
=
3
3

∵OG⊥平面ABC,
∴∠ABG=60°,
∴OA=2AG=
2
3
3
,OG=
3
AG=1.
∵△ABC是正三角形,
∴BD=CD=
BC
2
=
1
2
,而OB=OC,∴OD⊥BD,
∴OD=
OB2-BD2
=
OA2-BD2
=
4
3
-
1
4
=
13
12

∴△ABC的面积=
1
2
AB2sin60°=
1
2
×1×
3
2
=
3
4

∴O-ABC的体积为
1
3
×
S△ABC×OG=
1
3
×
3
4
×1
=
3
12

故答案为:
3
12
点评:本题考查三棱锥的体积的求法,解题时要认真审题,注意合理地化立体问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案