精英家教网 > 高中数学 > 题目详情
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点F是PB的中点,点E在边BC上移动.
(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并求出EF到平面PAC的距离;
(2)命题:“不论点E在边BC上何处,都有PE⊥AF”,是否成立,并说明理由.
分析:(1)由题设中的条件E,F为中点可得EF∥PC,由此可判断出EF与平面PAC的位置关系是平行,再根据体积相等即可求出EF到平面PAC的距离;
(2)由题设条件及图形可得出AF⊥平面PBE,由线面垂直的定义可得出无论点E在边BC的何处两线都垂直.
解答:解:(1)当点E为BC的中点时,EF与平面PAC平行.
∵在△PBC中,E、F分别为BC、PB的中点,∴EF∥PC又EF?平面PAC
而PC?平面PAC
∴EF∥平面PAC.
所以:点E到平面PAC的距离和EF到平面PAC的距离相等.
∵PD与平面ABCD所成的角是30°,
∴PD=
3
,AC=2.
设E到平面PAC的距离为h.
∵VE-PAC=vP-AEC
1
3
•h•S△PAC=
1
3
•PA•S△AEC⇒h=
PA•S△AEC
S△PAC
=
PA×
1
4
×SABCD
1
2
×PA•AC
=
3
8

所以:EF到平面PAC的距离为:
3
8

(2)∵PA⊥平面ABCD,BE?平面ABCD,∴EB⊥PA.又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,∴EB⊥平面PAB,
又AF?平面PAB,∴AF⊥BE.
又PA=AB=1,点F是PB的中点,∴AF⊥PB,又∵PB∩BE=B,PB,BE?平面PBE,∴AF⊥平面PBE.
∵PE?平面PBE,∴AF⊥PE.
即不论点E在边BC上何处,都有PE⊥AF成立.
即命题成立.
点评:本题中涉及到点、线、面间的距离计算.一般在求点到面的距离当垂线直接不好求时,常用体积相等来求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面AC,四边形ABCD是矩形,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B为45°,AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
PB=
6

(1)证明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

查看答案和解析>>

同步练习册答案