精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为 为参数),过点且倾斜角为的直线与曲线交于两点.

(1)求的取值范围;

(2)求中点的轨迹的参数方程.

【答案】(1) (2) 为参数, ).

【解析】

1)求出曲线和直线的普通方程,通过直线与圆相交求出斜率的范围,从而得出倾斜角的范围;

2)设出对应的参数,联立直线与圆的方程,借助韦达定理表示的参数,从而得出点的轨迹的参数方程.

解:(1) 曲线的直角坐标方程为,

时,交于两点,

时,记,则的方程为

交于两点当且仅当

解得

综上的取值范围是.

(2)的参数方程为为参数,),

对应的参数分别为

满足

由韦达定理可得:

,

又点的坐标满足

所以点的轨迹的参数方程为为参数, ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知顶点在原点,焦点在轴上的抛物线过点.

1)求抛物线的标准方程;

2)斜率为的直线与抛物线交于两点,点是线段的中点,求直线的方程,并求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCDE为棱AA1的中点,AB=2AA1=3

(Ⅰ)求证:A1C∥平面BDE

(Ⅱ)求证:BDA1C

(Ⅲ)求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为复数,为纯虚数,

1)当求点的轨迹方程;

2)当时,若为纯虚数,求:的值和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).

(1)若AB的中点为T,直线MT的斜率为,证明:k· 为定值;

(2)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

同步练习册答案