精英家教网 > 高中数学 > 题目详情

(1)如果两个实数u<v,求证:数学公式
(2)定义 设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式数学公式成立,则称F(x)是f(x)在区间I上的甲函数,f(x)是F(x)在区间I上的乙函数.
请根据乙函数定义证明:在(0,+∞)上,函数数学公式数学公式的乙函数.

解:(1)证:由u<v有 2u<u+v<2v. 即
(2 )证明:对0<u<v有
不等式
表明,的乙函数.
分析:(1)由u<v有 2u<u+v<2v,结合u+v═,可证;
(2)根据f(x)是F(x)在区间I上的乙函数的定义,只需证:
点评:本题以函数为载体,考查新定义,考查新函数的运用,关键是理解新定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a≠0)满足:①f(0)=0;②?x∈R,f(x)≥x;③f(-
1
2
+x
)=f(-
1
2
-x
).
(1)求f(x)的表达式;
(2)试讨论函数g(x)=f(x)-2x在区间[-2,2]内的单调性;
(3)是否存在实数t,使得函数h(x)=f(x)-x2-x+t与函数u(x)=|log2x|(x∈(0,2])的图象恒有两个不同交点,如果存在,求出相应t的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如果两个实数u<v,求证:2u<
v2-u2
v-u
<2v

(2)定义  设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式f(p)≤
F(u)-F(v)
u-v
≤f(q)
成立,则称F(x)是f(x)在区间I上的甲函数,f(x)是F(x)在区间I上的乙函数.
请根据乙函数定义证明:在(0,+∞)上,函数g(x)=
1
2
x
f(x)=
x
的乙函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•金山区二模)(1)设u、v为实数,证明:u2+v2
(u+v)2
2
;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
1
2

证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)如果两个实数u<v,求证:2u<
v2-u2
v-u
<2v

(2)定义  设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式f(p)≤
F(u)-F(v)
u-v
≤f(q)
成立,则称F(x)是f(x)在区间I上的甲函数,f(x)是F(x)在区间I上的乙函数.
请根据乙函数定义证明:在(0,+∞)上,函数g(x)=
1
2
x
f(x)=
x
的乙函数.

查看答案和解析>>

同步练习册答案