精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数f(x)=mxα的图象经过点A(2,2).

(1)试比较2ln f(3)与3ln f(2)的大小;

(2)定义在R上的函数g(x)满足g(-x)=g(x), g(4+x)=g(4-x),且当x∈[0,4]时,

. 若关于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解,求实数n的取值范围。

【答案】(1) 2ln f(3)>3ln f(2)..

(2) .

【解析】分析:(1)两数相除与1比较大小即可;

(2)由()′=,函数y在[1,e]单调递增,在(e,4]单调递减,g(-x)=g(x)且g(4+x)=g(4-x),g(4+x)=g(x-4),从而g(x)为周期T=8的偶函数.画出g(x)在一个周期内的图象,利用数形结合分析即可.

详解:函数f(x)=mxα为幂函数,所以m=1;又由于其图象经过点A(2,2),则有α=1.所以f(x)=x.

(1)>1

由于2ln f(3)>0, 3ln f(2)>0, 所以2ln f(3)>3ln f(2).

(2) 由()′=,函数y在[1,e]单调递增,在(e,4]单调递减.

因为g(-x)=g(x)且g(4+x)=g(4-x),g(4+x)=g(x-4),从而g(x)为周期T=8的偶函数.

由当x∈[0,4]时,g(x)=,g(x)在一个周期内的图像如图所示:

n=0时,显然不合题意;

n>0时,g 2(x)+ng(x)>0g(x)[g(x)+n]>0g(x)<-ng(x)>0.

在[-200,200]上的整数解共有401-100=301个,显然不合题意;

n<0时,g2(x)+ng(x)>0g(x)[g(x)+n]>0g(x)<0或g(x)>-n.

由(1)知: >=, 要使不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解, 只需≤-n<, 解得:- <n≤-.

综上, -<n≤-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧棱垂直于底面,分别是的中点.

(Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),离心率e= ,已知点P(0, )到椭圆C的右焦点F的距离是 .设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)求点Q的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题pf(x)=-x2+2ax+1-ax∈[0,1]时的最大值不超过2,命题q:正数xy满足x+2y=8,且 恒成立. 若p∨(q)为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上确定一点E,使得PB∥平面ACE,并求 的值;
(2)在(1)条件下,求平面PAB与平面ACE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合: ①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ ,现有一组数据,绘制得到茎叶图,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)求a的值;
(Ⅱ)现从茎叶图小于3的数据中任取2个数据分别替换m的值,求恰有1个数据使得函数f(x)没有零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,已知,对任意nN*,都有2Sn=(n+1an

1)求数列{an}的通项公式;

2)若数列的前项和为Tn,求Tn的取值范围.

查看答案和解析>>

同步练习册答案