精英家教网 > 高中数学 > 题目详情

【题目】三棱柱中,平面平面,点F为棱的中点,点E为线段上的动点.

1)求证:

2)若直线与平面所成角的正弦值为,求二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)首先根据题意得到,利用平面平面的性质得到平面,从而得到,根据勾股定理得到,从而得到,利用线面垂直的判定得到平面,从而证明.

2)以点为原点,以轴,建立空间直角坐标系,利用向量法求解二面角的余弦值即可.

1)因为中点,所以.

因为平面平面,平面平面

平面

所以平面,而平面,故

又因为,所以

又因为在三棱柱中,

所以

,故平面

平面,所以.

2)以点为原点,以轴,

建立如图所示的空间直角坐标系,

,由得:

,设平面的法向量为

因为

设直线与平面所成角为,则

解得:.

又平面的一个法向量

设平面的一个法向量为

则平面的一个法向量为

设二面角的平面角为

又因为二面角的平面角为锐角,

则二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若时,恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,试研究函数的极值情况;

(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,且则下列结论中不正确的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的菱形中,,将菱形沿对角线折起,使二面角的大小为,则所得三棱锥的外接球表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,且.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:

收看时间(单位:小时)

收看人数

14

30

16

28

20

12

(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全列联表:

合计

体育达人

40

非体育达人

30

合计

并判断能否有的把握认为该校教职工是否为“体育达人”与“性别”有关;

(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘,不断重复这样的运算,经过有限步后,最终都能够得到,得到即终止运算,己知正整数经过次运算后得到,则的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为:(

A.15.5B.12.5C.9.5D.6.5

查看答案和解析>>

同步练习册答案