精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若ARB,求实数m的取值范围.

【答案】
(1)解:由已知得A={x|x2﹣2x﹣8≤0,x∈R}=[﹣2,4],

B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }=[m﹣3,m].

∵A∩B=[2,4],∴ ∴m=5.


(2)解:∵B=[m﹣3,m],∴RB=(﹣∞,m﹣3)∪(m,+∞).

∵ARB,

∴m﹣3>4或m<﹣2.

∴m>7或m<﹣2.

∴m∈(﹣∞,﹣2)∪(7,+∞).


【解析】(1)根据所给的两个集合的不等式,写出两个集合对应的最简形式,根据两个集合的交集,看出两个集合的端点之间的关系,求出结果.(2)根据所求的集合B,写出集合B的补集,根据集合A是B的补集的子集,求出两个集合的端点之间的关系,求出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的斜率为k,经过点(1,﹣1),将直线向右平移3个单位,再向上平移2个单位,得到直线m,若直线m不经过第四象限,则直线l的斜率k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)若 = + =2 +8 =3( ).求证:A,B,D三点共线;
(2)试确定实数k,使k + +k 共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.
(1)求直线l的方程;
(2)求直线l关于原点O对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:

课程

数学1

数学2

数学3

数学4

数学5

合计

选课人数

180

540

540

360

180

1800

为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取10人进行分析.

(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;

(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为,选择数学1的人数为,设随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆C过点A ,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题:
(1)求高一(1)班参加校生物竞赛人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的学生中任选两人进行某项研究,求至少有一人分数在[90,100]之间的概率.

查看答案和解析>>

同步练习册答案