精英家教网 > 高中数学 > 题目详情
15.已知直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,点$|MN|≥2\sqrt{3}$,求k的取值范围.

分析 利用垂径定理及勾股定理表示出弦长|MN|,列出关于k的不等式,求出不等式的解集即可得到k的范围.

解答 解:由圆的方程得:圆心(2,3),半径r=2,
∵圆心到直线y=kx+3的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,|MN|≥2$\sqrt{3}$,
∴2$\sqrt{4-\frac{4{k}^{2}}{{k}^{2}+1}}$≥2$\sqrt{3}$,
变形整理得4k2+4-4k2≥3k2+3,
解得:-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$,
∴k的取值范围是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

点评 本题考查了直线与圆相交的性质,考查垂径定理及勾股定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列转化结果错误的是(  )
A.67°30′化成弧度是$\frac{3}{8}$πB.-$\frac{10}{3}$π化成度是-600°
C.-150°化成弧度是$\frac{5}{6}$πD.$\frac{π}{12}$化成度是15°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x0∈R,3${\;}^{{x}_{0}}$+1≤$\frac{3}{2}$”的否定为(  )
A.?x0∈R,3${\;}^{{x}_{0}}$+1>$\frac{3}{2}$B.?x0∈R,3${\;}^{{x}_{0}}$+1≥$\frac{3}{2}$
C.?x∈R,3x+1>$\frac{3}{2}$D.?x∈R,3x+1<$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各图中,不可能表示函数y=f(x)的图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的学生有30人,则n的值为(  )
A.100B.1000C.90D.900

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若全集U=R,集合M={x|x2>4},N={x|$\frac{3-x}{x+1}$>0},则M∩(∁UN)等于(  )
A.{x|x<-2}B.{x|x<-2}或x≥3}C.{x|x≥32}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当x∈$[\frac{π}{6},\frac{7π}{6}]$时,求函数y=3-sinx-2cos2x的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程${log_{\frac{1}{2}}}x={2^x}-2016$的实数根的个数为(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在(1-2x)m的展开式中,第5项、第6项和第7项的二项式系数为等差数列,求展开式中的第2项.

查看答案和解析>>

同步练习册答案