【题目】如图,在四棱锥中,底面为平行四边形,,,是边长为的等边三角形,
(1)证明:.
(2)求二面角的余弦值..
【答案】(1)见解析;(2)
【解析】
(1)先根据余弦定理计算得,再根据勾股定理得,即得为等腰直角三角形,取的中点,可得结合条件根据线面垂直判定定理得,即得根据勾股定理得,根据线面垂直判定定理得,最后根据面面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各面法向量,利用向量数量积求法向量夹角,最后根据二面角与法向量夹角关系得结果.
(1)在中,,,,由余弦定理可得,
故,所以,且为等腰直角三角形.
取的中点,连接,由,得,连接,
因为,所以,所以.
又,,,所以,即.
又,所以,又.
所以.
(2)解:以为原点,,,所在的直线分别为建立如图所示的空间直角坐标系,则,,,,.
设平面的法向量,,,
,令,则,所以,
设平面的法向量,,,
,令,则,所以,
故.
因为二面角为锐角,所以二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线与斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.
(1)求椭圆C的方程;
(2)如果直线l的斜率等于-1,求出k1k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点P为平面上的动点,过点P作直线l:的垂线,垂足为Q,且.
Ⅰ求动点P的轨迹C的方程;
Ⅱ设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同的两点,且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: ,.
(1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟? (精确到整数)
(2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表)
(3)在抽取的名手机使用者中在和中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自和的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(ax2-2x)ex,其中a≥0.
(1)当a=时,求f(x)的极值点;
(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆周率是圆的周长与直径的比值,一般用希腊字母表示,早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年,在生活中,我们也可以通过设计下面的实验来估计的值;从区间内随机抽取200个数,构成100个数对,其中满足不等式的数对共有11个,则用随机模拟的方法得到的的近似值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com