精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在四棱锥中,底面,点为棱的中点,

(1)试在棱上确定一点,使平面平面,说明理由;

(2)若为棱上一点,满足,求二面角的余弦值.

【答案】(1)详见解析(2)

【解析】

⑴取中点,然后证明即可得证

⑵建立空间直角坐标系,求出平面、平面的法向量,运用夹角公式求出二面角的余弦值

(1)取中点,则中点即所求的点.理由如下:

分别为的中点,.

..

易知四边形ABMP为平行四边形,所以

.

平面平面.

(2)由题意知两两互相垂直,建立如图所示的空间直角坐标系,

则向量.

由点在棱上,设,.

.

,得,因此,解得.

.

为平面的法向量,

.

不妨设,可得平面的一个法向量为.

取平面的法向量

.

易知,二面角是锐角,

所以其余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分组: ,…, ,得到的频率分布直方图如图所示.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(Ⅱ)求这名男生身高在以上(含)的人数;

(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)有极小值.

(1)求实数的取值范围;

(2)若函数时有唯一零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为分钟,有1200名小学生参加了此项调查,调查所得到的数据用程序框图处理(如图),若输出的结果是840,若用样本频率估计概率,则平均每天做作业的时间在0~60分钟内的学生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O,直线l

若直线l与圆O交于不同的两点AB,当时,求实数k的值;

P是直线上的动点,过P作圆O的两条切线PCPD,切点分别为CD,试探究:直线CD是否过定点若存在,请求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上单调递减;命题曲线为双曲线.

(Ⅰ)若“”为真命题,求实数的取值范围;

(Ⅱ)若“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常量,)的图像经过点

1)求的值;

2)当,函数的图像恒在函数图像的上方,求实数的取值范围;

3)是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知底面为正方形的四棱锥,各侧棱长都为,底面面积为16,以为球心,2为半径作一个球,则这个球与四棱锥相交部分的体积是( )

A. B. C. D.

【答案】C

【解析】构造棱长为4的正方体,四棱锥O-ABCD的顶点O为正方体的中心,底面与正方体的一个底面重合.可知所求体积是正方体内切球体积的,所以这个球与四棱锥O-ABCD相交部分的体积是: .

本题选择C选项.

点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.

型】单选题
束】
13

【题目】为第二象限角__________

查看答案和解析>>

同步练习册答案